If $$ {1+sinθ\over {1-sinθ}}={p^{2}\over{q^{2}}}$$, then sec θ is equal to:
5 873 5f40dfa24c9a9415f7cdfc3b
Q:
If $$ {1+sinθ\over {1-sinθ}}={p^{2}\over{q^{2}}}$$, then sec θ is equal to:
- 1$$ {2p^{2}{q^{2}}\over {p^{2}+{q^{2}}}}$$false
- 2$${1\over 2}\left({q\over p}+{p\over q} \right)$$true
- 3$$ {1\over {p^{2}}}+{1\over {q^{2}}}$$false
- 4$$ {p^{2}q^{2}}\over{p^{2}+q^{2}}$$false
- Show Answer
- Workspace
- Discuss