If $$ {tan\ θ={a\over b}}$$ then $$ {a\sinθ+b\cosθ\over{a\sinθ-b\cosθ}}$$ is
5 752 6064205c8278fd44192a0123
Q:
If $$ {tan\ θ={a\over b}}$$ then $$ {a\sinθ+b\cosθ\over{a\sinθ-b\cosθ}}$$ is
- 1$$ {a\over {a^{2}+b^{2}}}$$false
- 2$$ {b\over {a^{2}+b^{2}}}$$false
- 3$$ {a^{2}-b^{2}\over {a^{2}+b^{2}}}$$false
- 4$$ {a^{2}+b^{2}\over {a^{2}-b^{2}}}$$true
- Show Answer
- Workspace
- Discuss