Pace
252 064d9d814d02c5c746bed44c264d9d814d02c5c746bed44c2Direction: Read the given passage carefully and answer the questions that follow. Certain words are printed in bold to help you locate them while answering some of these.
If you’re concerned that automation and artificial intelligence are going to disrupt the economy over the next decade, join the club. But while policymakers and academics agree there’ll be significant disruption, they differ about its impact.
On one hand, techno-pessimists argue that new forms of automation will displace most jobs without creating new ones. In other words, most of us will lose our jobs. On the flip side of the debate, techno-optimists contend that continued investments in education and research and development will offset the job losses and generate many new human tasks that complement AI.
Researchers have been studying jobs that involve digital skills for years to try to understand their merit. But what does it really mean for a job or skill to be “digital”?
In earlier research, all it meant was that a worker used a computer. Since nearly all workers use a PC today, we need a more refined definition of digital skills that takes into account how much a job depends on doing things like programming, crunching data in Excel spreadsheets and even using a smartphone.
In a particular research, a new way was created to measure digital or information technology skills in the labour market based on how frequently they’re used in an occupation. For example, how much time does a financial adviser spend analyzing data or an event planner use a computer?
It was found that workers in occupations that rank higher in IT industry earn more than demographically similar peers in other occupations – and that this earnings gap has been growing. Not only that, but it was also found something interesting on the impact of a college degree on the lifetime earnings of a person in IT industry. Historically, workers with a college degree have earned a lot more than peers without one. Even the level of the college makes a difference. Recent research has shown that this so-called college premium has been flattening. The main cause, according to the analysis, is that the college premium for occupations requiring fewer digital skills has been declining, while it has been rising for those we identified as digital jobs such as software developers, programmers and aerospace engineering. At least some of the flattening in the college premium is due to the increasing number of bachelor’s degrees that convey few skills that are valued in the marketplace.
Another research compares the measures of job quality – such as a sense of purpose, enjoyability and career advancement – with income, occupations and a range of demographic characteristics. It found that jobs that require greater interaction with technology tended to score higher in quality, particularly in terms of measures like career advancement.
The fact that these jobs not only pay more but also provide greater levels of employee satisfaction and engagement paints a more optimistic picture about the future of work. And that gives hope, particularly since the digital economy is growing at a pace nearly four times faster than the broader economy.
The key is making tomorrow’s jobs “robot-proof” by designing them in a way that takes advantage of the digital skills described above. And universities must play a big role in this by identifying what a good job looks like and ensuring future generations learn the necessary skills.
According to the passage, why are some people concerned with the ongoing transformation of the economy brought by the use of automation and AI?
242 064d9d0fd9b618cf631e208df