Aptitude Questions Practice Question and Answer

Q: The Value of  logtan10+logtan20+⋯⋯+logtan890 is 1450 1

  • 1
    -1
    Correct
    Wrong
  • 2
    0
    Correct
    Wrong
  • 3
    1/2
    Correct
    Wrong
  • 4
    1
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 2. "0"
Explanation :

Answer: B) 0 Explanation: = log tan10+log tan890 + log tan20+ log tan880+⋯⋯+log tan450     = log [tan10 × tan890] + log [tan20 × tan880 ] +⋯⋯+log1     ∵ tan(90-θ)=cotθ and tan 450=1     = log 1 + log 1 +.....+log 1    = 0.

Q: Find value of log27 +log 8 +log1000log 120 1701 1

  • 1
    1/2
    Correct
    Wrong
  • 2
    3/2
    Correct
    Wrong
  • 3
    2
    Correct
    Wrong
  • 4
    2/3
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 2. "3/2"
Explanation :

Answer: B) 3/2 Explanation:  = log 33 + log 23+ log 103log10×3×22        =log33 12+log 23+log 10312log(10×3×22)                 =12log 33+3 log 2+12 log103log10+log3+log22                 =32log 3 + 2 log 2 + log 10log 3 + 2 log 2 + log 10 = 32

Q: A shopkeeper earns a profit equal to the selling price of 11 meter by selling 22-meter cloth. Find the profit percent. 2582 1

  • 1
    50%
    Correct
    Wrong
  • 2
    52%
    Correct
    Wrong
  • 3
    45%
    Correct
    Wrong
  • 4
    55%
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 1. "50%"

Q: A vertical toy 18 cm long casts a shadow 8 cm long on the ground. At the same time a pole casts a shadow 48 m. long on the ground. Then find the height of the pole ? 3405 0

  • 1
    1080 cm
    Correct
    Wrong
  • 2
    180 m
    Correct
    Wrong
  • 3
    108 m
    Correct
    Wrong
  • 4
    118 cm
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 3. "108 m"
Explanation :

Answer: C) 108 m Explanation: We know the rule that,   At particular time for all object , ratio of height and shadow are same.   Let the height of the pole be 'H'   Then  188=H48   => H = 108 m.

Q: Solve the equation 122x+1 = 1 ? 4081 0

  • 1
    -1/2
    Correct
    Wrong
  • 2
    1/2
    Correct
    Wrong
  • 3
    1
    Correct
    Wrong
  • 4
    -1
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 1. "-1/2"
Explanation :

Answer: A) -1/2 Explanation: Rewrite equation as 122x+1 = 120   Leads to 2x + 1 = 0    Solve for x : x = -1/2

Q: In a queue, Shankar is ninth from the rear end. Althaf's place is eighth from the front. Nitu is standing between the two. What could be the minimum numbers of boys standing in the queue ? 2415 0

  • 1
    18
    Correct
    Wrong
  • 2
    14
    Correct
    Wrong
  • 3
    22
    Correct
    Wrong
  • 4
    24
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 2. "14"
Explanation :

Answer: B) 14 Explanation: 1 2 3 4 5 6(Shankar) 7(Nitu) 8(Althaf) 9 10 11 12 13 14Here, Althaf is 8th from front, Shankar is 9th from rear end and Nitu is between themSo minimum no. of boys standing in the queue = 14

Q: What is the number of digits in 333? Given that log3 = 0.47712? 5528 0

  • 1
    12
    Correct
    Wrong
  • 2
    13
    Correct
    Wrong
  • 3
    14
    Correct
    Wrong
  • 4
    15
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 2. "13"
Explanation :

Answer: B) 13 Explanation:  Let   Let x=333 = 333    Then, logx = 33 log3     = 27 x 0.47712 = 12.88224    Since the characteristic in the resultant value of log x is 12   ∴The number of digits in x is (12 + 1) = 13    Hence the required number of digits in 333is 13.

Q: On selling oranges 5 for Rs.1. One gets 20% profit. How many orange were purchased for Rs.1. 3863 0

  • 1
    3
    Correct
    Wrong
  • 2
    7
    Correct
    Wrong
  • 3
    4
    Correct
    Wrong
  • 4
    6
    Correct
    Wrong
  • Show AnswerHide Answer
  • Workspace

Answer : 4. "6"

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully

      Report Error

    Please Enter Message
    Error Reported Successfully