Trigonometry Questions and Answers for Competitive Exams

Vikram Singh3 years ago 12.4K Views Join Examsbookapp store google play
Trigonometry Questions and Answers for Competitive Exams
Q :  

If 2sinθ+ 15 cos2θ=7, 0°˂θ˂90°, then what is the value of $$ {3-tanθ\over 2+tanθ}$$?

(A) $$ {1\over 4}$$

(B) $$ {3\over 4}$$

(C) $$ {1\over 2}$$

(D) $$ {5\over 8}$$


Correct Answer : C

Q :  

If Tan4x – Tan2x=1 then the value of Sin4x + Sin2x is__

(A) 1

(B) $$ {1\over 2}$$

(C) 3

(D) $$ {1\over 5}$$


Correct Answer : A

Q :  

(sec A + tan A – 1) (sec A – tan A+1) =?

(A) cotA

(B) 2cotA

(C) tanA

(D) 2tanA


Correct Answer : D

Q :  

The value of $$ {(cos {\ 9°}+sin{\ 81°}})({sec {\ {9°}+cosec{\ 81°}}})\over{sin{\ 56°}sec{\ 34° }}+ {cos{\ 25°}cosec{\ 65°}}$$ is:

(A) $$ {1\over 4}$$

(B) 4

(C) 2

(D) $$ {1\over 2}$$


Correct Answer : C

Q :  

If sin2a = cos3a then the value of cot6 a – cot2a? 

(A) 1

(B) 2

(C) 0

(D) -1


Correct Answer : A

Q :  

Which of the following values suits for A to make the equation  $$ {{ATan62°Sec 28°Cot 38°}\over {Cosec62°Tan11°}}=1$$ ?

(A) $$ {{Tan38°Tan79°}\over {Tan 28°}}$$

(B) $$ {{Tan28°Tan38°}\over {Tan 79°}}$$

(C) $$ {{Tan38°}\over {Tan 79°Tan28°}}$$

(D) $$ {{Tan28° Tan 79°}\over { Tan38°}}$$


Correct Answer : B

Q :  

Solve the given equation.
$$ {{cot \ 30°}\over {1+sin\ 45°}}+{{1+sin\ 45°}\over cot \ 30°}=?$$

(A)

(B)

(C)

(D)


Correct Answer : C

Q :  

If A and B are acute angles and Sec A =3; Cot B=4, then the value of is:

(A) 2

(B)

(C)

(D)


Correct Answer : C

Q :  

If θθθ  then Find the value of tan θ ?

(A) 4

(B)

(C) 3

(D) 5


Correct Answer : B

Q :  

Simplify θθ.

(A) Cot θ

(B) Tan θ

(C) Sec θ

(D) Cosec θ


Correct Answer : A

Showing page 2 of 5

Choose from these tabs.

You may also like

About author

Vikram Singh

Providing knowledgable questions of Reasoning and Aptitude for the competitive exams.

Read more articles

  Report Error: Trigonometry Questions and Answers for Competitive Exams

Please Enter Message
Error Reported Successfully