$$ (1-{1\over3})(1-{1\over4})(1-{1\over5})......(1-{1\over n})$$
764 05ec4a7b2980ff60a66c0683d5ec4a7b2980ff60a66c0683dSolve the following equation.
If $${x}^2+{y}^2x+1=0$$ then the value of $$x^{31}+y{35}$$ is
1119 05d8c8e00e01f466533646b06If x2+y2+z2 = xy + yz + zx, then the value of $${3x^4+7y^4+5z^4}\over{5x^2y^2+7y^2z^2+3z^2x^2} $$ is
1440 05dca43e8582669277c292f17If $$ {{x+1}\over4x}={5\over 2}$$ then what is the value of $$ 64x^6+1\over 8x^3 $$
1118 05ddcdd14e1ce690ab506aa1eIf x = 2 then the value of $$ x^3 + 27x^2 + 243x + 631$$ is:
1093 05ed62576ebc5ce408e2a9643