We know that
$$ {1+tan^2{θ}}={sec^2θ}$$
$$ {1+cot^2{θ}}={cosec^2{θ}}$$
$$ \sqrt {1+tan^2{θ}+1+cot^2{θ}}$$
If $$ secθ+tanθ=2+\sqrt{5}$$, then the value of $$ sinθ+cosθ$$ is:
887 05f058db23f7f070477919df3$$ {tan^2θ}$$ is equal to:-
907 05efeb11c7228dd6b06e74e29$$ {tan7°tan23°tan60°tan67°tan83°}$$ is equal to-
936 05efeafe79bfe193cd14b75c5If 4tanθ=3,the value of $$ \left({4sinθ-2cosθ\over4sinθ+2cosθ}\right) $$ is:-
1134 05efeaf90d4461c5b47dceb30Find the value tanθ-cosθ in the given figure.
Find the value of $$\left({sin 35°\over cos55°} \right)^2+\left({cos55°\over sin 35°} \right)^2 \ -2 sin^{3}30°$$
1199 05ef04da781a47f2e7ae446be